the $\mathrm{Sn} \cdots \mathrm{F}$ interactions as being secondary bonds (Alcock, 1972).

The observed $\mathrm{N}-\mathrm{N}$ distance in the $\left[\mathrm{N}_{2} \mathrm{H}_{6}\right]^{2+}$ ion of 1.428 (4) \AA is as expected for the hydrazinium ($2+$) ion (International Tables for X-ray Crystallography, 1962). The $\left[\mathrm{N}_{2} \mathrm{H}_{6}\right]^{2+}$ cation forms six $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds. A projection of the $\left[\mathrm{N}_{2} \mathrm{H}_{6}\right]^{2+}$ ion down the $\mathrm{N}-\mathrm{N}$ bond is shown in Fig. 2. The hydrogen-bond distances are in the usual range of 2.620 (4) to 2.707 (5) \AA (Table 2) (Anderson et al., 1973; KojićProdić, Šćavničar \& Matković, 1971; Golič \& Lazarini, 1974; Golič et al., 1980). There are some additional N...F contact distances $[2.850(4), \quad 2.956(4) \AA]$, which suggest bifurcated hydrogen bonds. The tetrahedral $\mathrm{H}-\mathrm{N}-\mathrm{H}$ and $\mathrm{H}-\mathrm{N}-\mathrm{N}$ angles range from 106 (3) to $114(7)^{\circ}$ (Table 2).

We would like to thank Professor L. Golič for valuable discussions and for his interest in this work. Financial support by the Research Council of Slovenia is gratefully acknowledged.

References

Alcock, N. W. (1972). Adv. Inorg. Chem. Radiochem. 15, 1-58. Anderson, M. R., Vilminot, S. \& Brown, I. D. (1973). Acta Cryst. B29, 2961-2962.
Bergerhoff, G. \& Goost, L. (1974). Acta Cryst. B30, 13621363.

Bergerhoff, G. \& Namgung, H. (1978). Acta Cryst. B34, 699-700.
Cameron, T. S., Knop, O. \& Macdonald, L. A. (1983). Can. J. Chem. 61, 184-188.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Donaldson, J. D., Laughlin, D. R. \& Puxley, D. C. (1977). J. Chem. Soc. Dalton Trans. pp. 865-868.
Frlec, B., Gantar, D., Goliť, L. \& Leban, I (1980). Acta Cryst. B36, 1917-1918.
Frlec, B., Gantar, D., Golič, L. \& Leban, I. (1981). Acta Cryst. B37, 666-668.
Frlec, B., Gantar, D., Golič, L. \& Leban, I. (1984). J. Fluorine Chem. 24, 271-279.
Frlec, b., Gantar, D. \& Holloway, J. H. (1981). Vesti. Slov. Kem. Drus. 28, 113-119.
Gantar, D. \& Rahten, A. (1984). Vestn. Slov. Kem. Drus. 31, 187-193.
Gaspersic-Škander, S. (1984). Structural Research of Metal Fluorides. Diploma Thesis, Edvard Kardelj Univ., Ljubljana, Yugoslavia.
Golič, L., Kaučič, V. \& Kojič-Prodič, B. (1980). Acta Cryst. B36, 659-661.
Golić, L. \& Lazarini, F. (1974). Monatsh. Chem. 105, 735-741.
Granier, W., Vilminot, S. \& Wahbi, H. (1985). Rev. Chim. Minér. 22, 285-292.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Kojić-Prodić, B., Matković, B. \& ŠćavniČar, S. (1971). Acta Cryst. B27, 635-637.
Kojić-Prodić, B., Š́ćavničar, S. \& Matković, b. (1971). Acta Cryst. B27, 638-644.
McDonald, R. R., Larson, A. C. \& Cromer, D. T. (1964). Acta Cryst. 17, 1104-1108.
Sarin, V. A., Dudarev, V. Yu., Fykin, L. E., Gorbunova, Yu. E., Il'in, E. G. \& Buslaev, Yu. A. (1977). Dokl. Akad. Nauk SSSR, 236, 393-396.
Slivnik, J., Maček, J., Rahten, A. \& Sedej, B. (1980). Thermochim. Acta, 39, 21-33.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. W. \& Hall, S. R. (1972). The XRA Y72 system-version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1988). C44, 1331-1334

The Synthesis and Structure of Heptacobalt Tetrakis(hydrogenphosphate) Bis(phosphate)

By P. Lightfoot* and A. K. Cheetham
Chemical Crystallography Laboratory, University of Oxford, 9 Parks Road, Oxford OX1 3PD, England

(Received 5 January 1988; accepted 17 March 1988)

Abstract

Co}_{7}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)_{4}, M_{r}=986 \cdot 4\), triclinic, $P \overline{1}$, $a=6.466$ (4) $, \quad b=9.480(2), \quad c=7.871$ (2) $\AA, \quad \alpha=$ 104.29 (2), $\quad \beta=101.35(3), \quad \gamma=109.10(3)^{\circ}, \quad V=$ $421.0 \AA^{3}, \quad D_{x}=3.884 \mathrm{~g} \mathrm{~cm}^{-3}, \quad Z=1, \quad \lambda(\operatorname{Mo} K \alpha)=$ $0.7107 \AA, \mu=74.1 \mathrm{~cm}^{-1}, F(000)=475$, room tem-

^[* Present address: Department of Inorganic and Structural Chemistry, The University, Leeds LS2 9JT, England.]

0108-2701/88/081331-04\$03.00
perature, $R=0.017$, $w R=0.021$ for 2122 unique reflections, $I>3 \sigma(I)$. The new phase was synthesized hydrothermally, and is isostructural with $\mathrm{Mn}_{7}\left(\mathrm{PO}_{4}\right)_{2^{-}}$ $\left(\mathrm{HPO}_{4}\right)_{4}$. The structure is based on a framework of edge- and corner-sharing $\mathrm{CoO}_{6}, \mathrm{CoO}_{5}$ and PO_{4} polyhedra, isotypic with that found in the mixedvalence iron phosphate $\mathrm{Fe}_{7}\left(\mathrm{PO}_{4}\right)_{6}$. In the present case, the cobalt is found purely in the divalent state, the © 1988 International Union of Crystallography
necessary charge balance being maintained by the addition of H atoms in the form of bridging $\mathrm{Co}-\mathrm{OH}-\mathrm{P}$ groups.

Introduction. During the course of our studies on the exploratory synthesis of some first-row transition-metal phosphates by hydrothermal methods, we have previously reported the synthesis and structure of $\mathrm{Mn}_{7}-$ $\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)_{4}$ (Lightfoot \& Cheetham, 1986). The structure was found to be related to that of the mixed-valence iron phosphate $\mathrm{Fe}_{3}^{\mathrm{II}} \mathrm{Fe}_{4}^{\mathrm{III}}\left(\mathrm{PO}_{4}\right)_{6}$ (Gorbunov, Maksimov, Kabalov, Ivaschenko, Mel'nikov \& Belov, 1980), and has been independently reported by Cudennec, Riou \& Gerault (1986) and Riou, Cudennec \& Gerault (1987). Manganese is present in the divalent state only, hydrogen atoms making up the required charge balance in the form of $\mathrm{Mn}-\mathrm{OH}-\mathrm{P}$ linkages, which do not alter the basic $\mathrm{Fe}_{7}\left(\mathrm{PO}_{4}\right)_{6}$ framework. In an attempt to extend the range of phases which adopt this basic structure type, reactions analogous to that used to prepare $\mathrm{Mn}_{7}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)_{4}$ were carried out using cobalt- or iron-containing starting materials. This paper describes the results of these reactions, in particular the synthesis and structure of the new divalent cobalt phase $\mathrm{Co}_{7}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)_{4}$.

Experimental. Crystals of $\mathrm{Co}_{7}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)_{4}$ were prepared by a hydrothermal method. A $1: 1$ molar mixture of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}(5 \mathrm{~g}$ total) was added to 15 ml distilled $\mathrm{H}_{2} \mathrm{O}$, and the resultant mixture was sealed in a Teflon-lined stainless steel autoclave. The bomb was placed in an air oven at 493 K and held for 48 h , whence it was removed and allowed to cool naturally to room temperature. Well formed bright purple crystals were isolated by suction filtration, washed with water and dried in air. X-ray powder diffraction revealed the product to be monophasic and to possess obvious structural similarities to that of $\mathrm{Fe}_{7}\left(\mathrm{PO}_{4}\right)_{6}$ (Gorbunov et al., 1980). The observed powder diffraction pattern recorded on a Philips PW 1710 diffractometer, using KCl as an internal standard, is given in Table 1. A pattern calculated on the basis of the single-crystal results presented herein is given for comparison.

A suitable crystal $(0.15 \times 0.10 \times 0.05 \mathrm{~mm})$ was mounted on an Enraf-Nonius CAD-4 diffractometer. The unit-cell constants were determined on the basis of 25 carefully centred reflections in the angular range $15<2 \theta<20^{\circ}$. Data were collected in the $\omega-2 \theta$ scan mode, with ω scan width $1.2+0.35 \tan \theta$, scan speed $0.70-5.50^{\circ} \mathrm{min}^{-1}$ in the range $0.2<\theta<30^{\circ}$. A total of 2933 reflections ($h-9$ to $9, k-13$ to $13, l-1$ to 11) were measured, which were merged to a unique set of 2340. Of these, 2122 were regarded as observed according to the criterion $I>3 \sigma(I)$. Data were corrected for Lorentz and polarization effects, and a semiempirical absorption correction, based on the ψ scans

Table 1. Observed and calculated X-ray powder diffraction patterns for $\mathrm{Co}_{7}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)_{4}$
Owing to the complexity of the pattern lines with $I_{\text {calc }}<5$ are not included.

Table 2. Final atomic coordinates and isotropic/ equivalent isotropic temperature factors for $\mathrm{Co}_{7}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)_{4}$

	x	y	z	$U\left(\right.$ iso) $/ U(\mathrm{eq})^{*}$
$\mathrm{Co}(1)$	0	0	0	0.0075
$\mathrm{Co}(2)$	0.38612 (3)	$0 \cdot 11007$ (2)	0.45711 (3)	0.0069
$\mathrm{Co}(3)$	0.28549 (3)	0.28506 (2)	-0.18742 (3)	0.0081
$\mathrm{Co}(4)$	0.05190 (3)	-0.48521 (2)	-0.28517 (3)	0.0074
- P (1)	0.08549 (6)	-0.17344 (4)	-0.42163 (5)	0.0055
P(2)	0.41036 (6)	$0 \cdot 37297$ (4)	0.23105 (5)	0.0067
P(3)	0.22564 (6)	-0.22195 (4)	0.14347 (5)	0.0057
O(1)	0.2620 (2)	0.2381 (1)	0.0505 (1)	0.0094
O(2)	0.3034 (2)	-0.0864 (1)	-0.4636 (1)	0.0081
$\mathrm{O}(3)$	0.2714 (2)	0.4744 (1)	0.2954 (2)	0.0108
O(4)	0.4804 (2)	0.3115 (1)	0.3847 (2)	0.0107
O(5)	0.4484 (2)	-0.2278 (1)	0.2455 (1)	0.0084
O(6)	0.0537 (2)	-0.3474 (1)	-0.4577 (1)	0.0076
O(7)	$0 \cdot 1081$ (2)	-0.0977 (1)	-0.2173 (1)	0.0095
O(8)	0.1259 (2)	0.1649 (1)	-0.4579 (1)	0.0081
O(9)	-0.0157 (2)	0.3365 (1)	-0.1711 (2)	0.0089
O(10)	0.3803 (2)	-0.4903 (1)	-0.2052 (2)	0.0101
$\mathrm{O}(11)$	0.2237 (2)	-0.0544 (1)	0.1861 (1)	0.0081
$\mathrm{O}(12)$	0.2063 (2)	-0.2745 (1)	-0.0671 (1)	0.0082
H(1)	0.373 (8)	0.562 (6)	0.406 (7)	0.09 (1)
H(2)	0.826 (5)	0.202 (4)	0.125 (4)	0.035 (8)

[^1]Table 3. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{Co}_{7}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)_{4}$

$\mathrm{Co}(1)-\mathrm{O}(1) \quad 2 \times$	$2 \cdot 217$ (1)	$\mathrm{P}(1)-\mathrm{O}(2) \quad 1.5$	1.528 (1)	
$\mathrm{Co}(1)-\mathrm{O}(7) \quad 2 \times$	2.093 (1)	$\mathrm{P}(1)-\mathrm{O}(6) \quad 1.539$	1.539 (1)	
$\mathrm{Co}(1)-\mathrm{O}(11) \quad 2$	2.131 (1)	$\mathrm{P}(1)-\mathrm{O}(7) \quad 1.54$	1.547 (1)	
		$\mathrm{P}(1)-\mathrm{O}(8) \quad 1.54$	1.544 (1)	
$\mathrm{Co}(2)-\mathrm{O}(2)$	2.049 (1)			
$\mathrm{Co}(2)-\mathrm{O}(2)$	2.086 (1)	$\mathrm{P}(2)-\mathrm{O}(1) \quad 1.531$	1.531 (1)	
$\mathrm{Co}(2)-\mathrm{O}(4)$	2.062 (1)	$\mathrm{P}(2)-\mathrm{O}(3) \quad 1.5$	1.578 (1)	
Co (2)-O(5)	2.196 (1)	$\mathrm{P}(2)-\mathrm{O}(4) \quad 1.52$	1.522 (1)	
$\mathrm{Co}(2)-\mathrm{O}(8)$	2.096 (1)	$\mathrm{P}(2)-\mathrm{O}(10) \quad 1.53$	1.532 (1)	
$\mathrm{Co}(2)-\mathrm{O}(11)$	2.121 (1)			
		$\mathrm{P}(3)-\mathrm{O}(5) \quad 1.532$	1.532 (1)	
$\mathrm{Co}(3)-\mathrm{O}(1)$	2.051 (1)	$\mathrm{P}(3)-\mathrm{O}(9) \quad 1.53$	1.530 (1)	
$\mathrm{Co}(3)-\mathrm{O}(5)$	2.065 (1)	$\mathrm{P}(3)-\mathrm{O}(11) \quad 1.54$	1.545 (1)	
$\mathrm{Co}(3)-\mathrm{O}(8)$	2.018 (1)	$\mathrm{P}(3)-\mathrm{O}(12) \quad 1.5$	1.576 (1)	
$\mathrm{Co}(3)-\mathrm{O}(9)$	2.178 (1)			
$\mathrm{Co}(3)-\mathrm{O}(10)$	2.063 (1)	$\mathrm{O}(3)-\mathrm{O}(4) \quad 2.60$	2.609 (2)	
		$\mathrm{O}(3)-\mathrm{H}(1) \quad 0.9$	0.97 (5)	
$\mathrm{Co}(4)-\mathrm{O}(3)$	2.115 (1)	$\mathrm{O}(4)-\mathrm{H}(1) \quad 1.6$	1.65 (5)	
$\mathrm{Co}(4)-\mathrm{O}(6)$	2.103 (1)			
$\mathrm{Co}(4)-\mathrm{O}(6)$	2.061 (1)	$\mathrm{O}(7)-\mathrm{O}(12) \quad 2.44$	2.448 (1)	
$\mathrm{Co}(4)-\mathrm{O}(9)$	2.067 (1)	$\mathrm{O}(12)-\mathrm{H}(2) \quad 0.9$	0.97 (3)	
$\mathrm{Co}(4)-\mathrm{O}(10)$	2.116 (1)	$\mathrm{O}(7)-\mathrm{H}(2) \quad 1.48$	1.48 (3)	
$\mathrm{Co}(4)-\mathrm{O}(12)$	$2.065 \text { (1) }$			
$\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(1)$	180.00	$\mathrm{O}(6)-\mathrm{Co}(4)-\mathrm{O}(3)$	81.99 (4)	
$\mathrm{O}(7)-\mathrm{Co}(1)-\mathrm{O}(1)$	2×90.38 (4)	$\mathrm{O}(6)-\mathrm{Co}(4)-\mathrm{O}(3)$	95.93 (4)	
$\mathrm{O}(7)-\mathrm{Co}(1)-\mathrm{O}(1)$	2×89.62 (4)	$\mathrm{O}(6)-\mathrm{Co}(4)-\mathrm{O}(6)$	77.86 (4)	
$\mathrm{O}(7)-\mathrm{Co}(1)-\mathrm{O}(7)$	180.00	$\mathrm{O}(9)-\mathrm{Co}(4)-\mathrm{O}(3)$	92.23 (4)	
$\mathrm{O}(11)-\mathrm{Co}(1)-\mathrm{O}(1)$	2×93.33 (4)	$\mathrm{O}(9)-\mathrm{Co}(4)-\mathrm{O}(6)$	165.73 (4)	
$\mathrm{O}(11)-\mathrm{Co}(1)-\mathrm{O}(1)$	2×86.67 (4)	$\mathrm{O}(9)-\mathrm{Co}(4)-\mathrm{O}(6)$	89.86 (4)	
$\mathrm{O}(11)-\mathrm{Co}(1)-\mathrm{O}(7)$	2×90.75 (4)	$\mathrm{O}(10)-\mathrm{Co}(4)-\mathrm{O}(3)$	165.55 (5)	
$\mathrm{O}(11)-\mathrm{Co}(1)-\mathrm{O}(7)$	2×89.25 (5)	$\mathrm{O}(10)-\mathrm{Co}(4)-\mathrm{O}(6)$	109.17 (4)	
$\mathrm{O}(11)-\mathrm{Co}(1)-\mathrm{O}(11)$	180.00	$\mathrm{O}(10)-\mathrm{Co}(4)-\mathrm{O}(6)$	(6) 95.43 (4)	
		$\mathrm{O}(10)-\mathrm{Co}(4)-\mathrm{O}(9)$	(9) 78.90	
		$\mathrm{O}(12)-\mathrm{Co}(4)-\mathrm{O}(3)$	(3) 89.70 (4)	
$\mathrm{O}(2)-\mathrm{Co}(2)-\mathrm{O}(2)$		$\mathrm{O}(12)-\mathrm{Co}(4)-\mathrm{O}(6)$	(6) 86.94 (4)	
$\mathrm{O}(4)-\mathrm{Co}(2)-\mathrm{O}(2)$	177.95 (4)	$\mathrm{O}(12)-\mathrm{Co}(4)-\mathrm{O}(6)$	(6) 162.84 (4)	
$\mathrm{O}(4)-\mathrm{Co}(2)-\mathrm{O}(2)$	93.75 (4)	$\mathrm{O}(12)-\mathrm{Co}(4)-\mathrm{O}(9)$	(9) $\begin{array}{r}106.15(4) \\ \text { (10) } \quad 81.98 \text { (4) }\end{array}$	
$\mathrm{O}(5)-\mathrm{Co}(2)-\mathrm{O}(2)$	81.34 (4)	$\mathrm{O}(12)-\mathrm{Co}(4)-\mathrm{O}(10)$		
$\mathrm{O}(5)-\mathrm{Co}(2)-\mathrm{O}(2)$	83.06 (4)			
$\mathrm{O}(5)-\mathrm{Co}(2)-\mathrm{O}(4)$	96.97 (4)	$\mathrm{O}(6)-\mathrm{P}(1)-\mathrm{O}(2)$	108.68 (6)	
$\mathrm{O}(8)-\mathrm{Co}(2)-\mathrm{O}(2)$	91.09 (4)	$\mathrm{O}(7)-\mathrm{P}(1)-\mathrm{O}(2)$	109.93 (6)108.74 (6)	
$\mathrm{O}(8)-\mathrm{Co}(2)-\mathrm{O}(2)$	161.49 (4)	$\mathrm{O}(7)-\mathrm{P}(1)-\mathrm{O}(6)$		
$\mathrm{O}(8)-\mathrm{Co}(2)-\mathrm{O}(4)$	89.70 (4)	$\mathrm{O}(8)-\mathrm{P}(1)-\mathrm{O}(2)$	110.98 (6)	
$\mathrm{O}(8)-\mathrm{Co}(2)-\mathrm{O}(5)$	78.47 (4)	$\mathrm{O}(8)-\mathrm{P}(1)-\mathrm{O}(6)$	109.95 (6)108.53 (6)	
$\mathrm{O}(11)-\mathrm{Co}(2)-\mathrm{O}(2)$	84.93 (4)	$\mathrm{O}(8)-\mathrm{P}(1)-\mathrm{O}(7)$		
$\mathrm{O}(11)-\mathrm{Co}(2)-\mathrm{O}(2)$	92.27 (4)			
$\mathrm{O}(11)-\mathrm{Co}(2)-\mathrm{O}(4)$	96.69 (4)	$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{O}(1)$	109.75 (6)	
$\mathrm{O}(11)-\mathrm{Co}(2)-\mathrm{O}(5)$	165.83 (4)	$\mathrm{O}(4)-\mathrm{P}(2)-\mathrm{O}(1)$	112.02 (6)	
$\mathrm{O}(11)-\mathrm{Co}(2)-\mathrm{O}(8)$	105.40 (4)	$\mathrm{O}(4)-\mathrm{P}(2)-\mathrm{O}(3) \quad 107.35$ (7)		
		$\mathrm{O}(10)-\mathrm{P}(2)-\mathrm{O}(1) \quad 111.33$ (6)		
$\mathrm{O}(5)-\mathrm{Co}(3)-\mathrm{O}(1)$	104.97 (4)	$\mathrm{O}(10)-\mathrm{P}(2)-\mathrm{O}(3) \quad 104.63$ (6)		
$\mathrm{O}(8)-\mathrm{Co}(3)-\mathrm{O}(1)$	$\begin{aligned} & 134.94(4) \\ & 83.39(4) \mathrm{O}(10)-\mathrm{P}(2)-\mathrm{O}(4) \quad 111.42 \text { (6) }\end{aligned}$			
$\mathrm{O}(8)-\mathrm{Co}(3)-\mathrm{O}(5)$				
$\mathrm{O}(9)-\mathrm{Co}(3)-\mathrm{O}(1)$	82.75 (4)	$\mathrm{O}(9)-\mathrm{P}(3)-\mathrm{O}(5) \quad 111.65$ (6)		
$\mathrm{O}(9)-\mathrm{Co}(3)-\mathrm{O}(5)$	171.29 (4)	$\mathrm{O}(11)-\mathrm{P}(3)-\mathrm{O}(5) \quad 114.71$ (6)		
$\mathrm{O}(9)-\mathrm{Co}(3)-\mathrm{O}(8)$	88.28 (4)	$\mathrm{O}(11)-\mathrm{P}(3)-\mathrm{O}(9) \quad 110.81$ (6)		
$\mathrm{O}(10)-\mathrm{Co}(3)-\mathrm{O}(1)$	123.52 (5)	$\mathrm{O}(12)-\mathrm{P}(3)-\mathrm{O}(5) \quad 106.61$ (6)		
$\mathrm{O}(10)-\mathrm{Co}(3)-\mathrm{O}(5)$	100.86 (4)	$\begin{array}{ll}\mathrm{O}(12)-\mathrm{P}(3)-\mathrm{O}(9) & 108.57(6) \\ \mathrm{O}(12)-\mathrm{P}(3)-\mathrm{O}(11) & 103.94(6)\end{array}$		
$\mathrm{O}(10)-\mathrm{Co}(3)-\mathrm{O}(8)$	96.98 (4)			
$\mathrm{O}(10)-\mathrm{Co}(3)-\mathrm{O}(9)$	$77.58 \text { (4) }$			

of three reflections, was applied; the minimum/ maximum corrections were $1 \cdot 00 / 1 \cdot 37$. Final coordinates for $\mathrm{Mn}_{7}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)_{4}$ (Lightfoot \& Cheetham, 1986) in the space group $P \overline{1}$ were used as a starting model for the structure refinement. Several cycles of full-matrix least-squares refinement on F led to final R factors $R=0.017, w R=0.021$. Weights were calculated according to a three-term Chebyshev weighting scheme (Carruthers \& Watkin, 1979) with parameters $4.0,-1 \cdot 6$ and $3 \cdot 2$. Corrections were also made for anomalous-dispersion and secondary-extinction effects. All non-hydrogen atoms were refined with anisotropic temperature factors, hydrogen atoms isotropically. During the final refinement cycle, the r.m.s. shift/e.s.d.
was $0 \cdot 05$. The final difference Fourier map showed no features higher than $0.7 \mathrm{e} \AA^{-3}$. All structure analysis and refinement was carried out using the Oxford CRYSTALS package (Watkin, Carruthers \& Betteridge, 1985). Scattering factors were taken from International Tables for X-ray Crystallography (1974).

Discussion. Final atomic coordinates and isotropic/ equivalent isotropic temperature factors are given in Table 2, and selected bond distances and angles in Table 3.* The structure is isomorphous with that of $\mathrm{Mn}_{7}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)_{4}$ and contains four crystallographically distinct metal sites (Fig. 1). $M(1)$ is on the inversion centre at $(0,0,0)$ and has an almost regular octahedral environment. Of the other three metal sites, $M(2)$ and $M(4)$ display distorted octahedral coordination and $M(3)$ has a five-coordinated geometry, best described as distorted trigonal bipyramidal. Fivecoordinate $\mathrm{Co}^{\mathrm{II}}$ is not unusual, and has been observed in the phosphates $\mathrm{Co}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (Nord, 1974), $\mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Krishamachari \& Calvo, 1972) and $\mathrm{Co}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Anderson, Kostiner \& Ruszala, 1976). Bond-strength bond-length calculations (Brown \& Shannon, 1973) confirm the cobalt in the present case to be purely divalent, valence sums for the four metal sites being $1.88,2.09,1.87$ and 2.07 , respectively.

The geometry of the PO_{4} groups is almost regular, the only marked deviations being to accommodate the $\mathrm{P}-\mathrm{O}-\mathrm{H}$ groups. The extension of the $\mathrm{P}(2)-\mathrm{O}(3)$ and $\mathrm{P}(3)-\mathrm{O}(12)$ bonds to 1.578 and $1.576 \AA$ respectively is typical of such linkages, and confirms the location of the H atoms. Very strong hydrogen bonds occur via

[^2]

Fig. 1. View of the structure along [100].
$\mathrm{O}(3)-\mathrm{H}(1) \cdots \mathrm{O}(4)$ and $\mathrm{O}(12)-\mathrm{H}(2) \cdots \mathrm{O}(7)$ (see Table 3). In particular, the donor-acceptor distance O (12)$\mathrm{O}(7)$ is remarkably short, at $2.448 \AA$. The corresponding distance in the Mn analogue is $2.500 \AA$, whereas the shortest distance reported in hydrates, as studied by neutron diffraction, is $2.546 \AA$ (Chiari \& Ferraris, 1982). However, shorter distances have been observed in the compounds $\mathrm{K}_{3} \mathrm{Cu}_{2} \mathrm{H}\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}$ (Effenberger, 1987) and $\mathrm{Na}_{5} \mathrm{Cu}_{3} \mathrm{H}\left(\mathrm{PO}_{4}\right)_{4}$ (Effenberger, 1985) where symmetric $\mathrm{P}-\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}-\mathrm{P}$ bonds lead to donor-acceptor distances of 2.437 and $2.388 \AA$ respectively.

Our attempts to prepare a purely divalent iron analogue of $\mathrm{Mn}_{7}\left(\mathrm{PO}_{4}\right)_{2}\left(\mathrm{HPO}_{4}\right)_{4}$ led to the formation of dark green-grey crystals, perhaps indicative of some degree of oxidation, though not as far as $\mathrm{Fe}_{7}\left(\mathrm{PO}_{4}\right)_{6}$ itself. Single-crystal X-ray analysis of this phase (Lightfoot \& Cheetham, 1986) does indeed suggest some degree of mixed-valence character, an approximate composition $\mathrm{Fe}_{6}^{\mathrm{II}} \mathrm{Fe}^{\mathrm{III}}\left(\mathrm{PO}_{4}\right)_{3}\left(\mathrm{HPO}_{4}\right)_{3}$ being deduced on the basis of bond-length bond-strength calculations. It was apparent from this experiment that $\mathrm{Fe}^{\mathrm{III}}$ showed a marked preference for the $M(2)$ and $M(4)$ sites, which are found to be fully occupied by $\mathrm{Fe}^{\mathrm{III}}$ in $\mathrm{Fe}_{7}\left(\mathrm{PO}_{4}\right)_{6}$ (Gorbunov et al., 1980).

It is possible that a solid solution $\mathrm{Fe}_{7}\left(\mathrm{PO}_{4}\right)_{2}-$ $\left(\mathrm{HPO}_{4}\right)_{4}-\mathrm{Fe}_{7}\left(\mathrm{PO}_{4}\right)_{6}$ may exist, with subtle control of experimental conditions governing the degree of oxidation. Mössbauer spectroscopy would clearly be of great value in studying this possibility in detail. Our own studies in these systems have now been extended to the solid solutions $(\mathrm{Mn}, \mathrm{Fe})_{7}\left(\mathrm{PO}_{4}\right)_{6}$ and $(\mathrm{Co}, \mathrm{Fe})_{7}{ }^{-}$
$\left(\mathrm{PO}_{4}\right)_{6}$, results of which will be presented in a forthcoming publication.

One of us (PL) would like to thank the SERC for the provision of a Research Studentship.

References

Anderson, J. B., Kostiner, E. \& Ruszala, F. A. (1976). Inorg. Chem. 15, 2744-2748.
Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Chiari, G. \& Ferraris, G. (1982). Acta Cryst. B38, 2331-2341.
Cudennec, Y., Riou, A. \& Gerault, Y. (1986). C. R. Acad. Sci. Sér. II, 302, 1149-1154.
EFFENBERGER, H. (1985). Z. Kristallogr. 172, 97-104.
Effenberger, H. (1987). Acta Cryst. C43, 123.7-1 239.
Gorbunov, Yu. A., Maksimov, B. A., Kabalov, Yu. K., Ivaschenko, A. N., Mel'nikov, O. K. \& Belov, N. V. (1980). Dokl. Akad. Nauk SSSR, 254, 873-877.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Krishamachari, N. \& Calvo, C. (1972). Acta Cryst. B28, 2883-2885.
Lightfoot, P. \& Cheetham, A. K. (1986). Abstr. IIIrd Eur. Conf. Solid State Chemistry, Regensburg, Federal Republic of Germany. Vol. II, p. 410.
Nord, A. G. (1974). Acta Chem. Scand. A28, 150-152.
Riou, A., Cudennec, Y. \& Gerault, Y. (1987). Acta Cryst. C43, 821-823.
Watkin, D. J., Carruthers, J. R. \& Betteridge, P. W. (1985). CRYSTALS User Guide. Chemical Crystallography Laboratory, Univ. of Oxford, England.

Acta Cryst. (1988). C44, 1334-1337

Structures of (I) Hexafluoroaluminic Acid Hexahydrate and (II) Pentafluoroaluminic Acid Pentahydrate*

By Dietrich Mootz, Ernst-Josef Oellers and Michael Wiebcke
Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, Universitätsstrasse 1, D-4000 Düsseldorf, Federal Republic of Germany

(Received 1 February 1988; accepted 5 April 1988)

Abstract

I) $\mathrm{H}_{3} \mathrm{AlF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}, M_{r}=252 \cdot 08$, hexagonal, $R \overline{3} c, a=9.861(5), c=17.497^{r}(2) \AA, V=1473.4 \AA^{3}$, $Z=6, D_{x}=1.71 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \bar{\alpha})=0.71073 \AA, \mu$ $=0.292 \mathrm{~mm}^{-1}, F(000)=780, T=183 \mathrm{~K}, R=0.036$

^[* Part 22 of the series Fluorides and Fluoro Acids and 29 of the series Crystal Structures of Acid Hydrates and Oxonium Salts. For parts 21 and 28 see Mootz \& Merschenz-Quack (1988, 1987), respectively.]

0108-2701/88/081334-04\$03.00
for 471 unique observed reflections. (II) $\mathrm{H}_{2} \mathrm{AlF}_{5} .5 \mathrm{H}_{2} \mathrm{O}$, $M_{r}=214.06$. Previously reported [Trunov, Efremov, Konstantinova, Velikodnyi \& Golota (1980). Sov. Phys. Dokl. 25, 508-509] structural data [monoclinic, $P c, \quad a=7.926$ (2),$\quad b=3.651$ (2),$\quad c=13.776$ (5) \AA, $\beta=108.27(3)^{\circ}, Z=2$ are newly interpreted in the centrosymmetric supergroup $P 2 / c$ with the crystallographic axes unchanged. The crystalline compounds are oxonium salts, $\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)_{3} \mathrm{AlF}_{6}$ and $\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}{ }^{-}$ © 1988 International Union of Crystallography

[^1]: * $U(\mathrm{eq})=\left(U_{1} U_{2} U_{3}\right)^{1 / 3}$, where U_{1}, U_{2}, U_{3} are the mean square displacements (in \AA^{2}) along the principal axes of the thermal ellipsoid.

[^2]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44870 (15 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

